The application of information theory for the research of aging and aging-related diseases.
Progress in Neurobiology, 157, 158-173, 2017
David Blokh and Ilia Stambler
Abstract
This article reviews the application of information-theoretical analysis, employing measures of entropy and mutual information, for the study of aging and aging-related diseases. The research of aging and aging-related diseases is particularly suitable for the application of information theory methods, as aging processes and related diseases are multi-parametric, with continuous parameters coexisting alongside discrete parameters, and with the relations between the parameters being as a rule non-linear. Information theory provides unique analytical capabilities for the solution of such problems, with unique advantages over common linear biostatistics. Among the age-related diseases, information theory has been used in the study of neurodegenerative diseases (particularly using EEG time series for diagnosis and prediction), cancer (particularly for establishing individual and combined cancer biomarkers), diabetes (mainly utilizing mutual information to characterize the diseased and aging states), and heart disease (mainly for the analysis of heart rate variability). Few works have employed information theory for the analysis of general aging processes and frailty, as underlying determinants and possible early preclinical diagnostic measures for aging-related diseases. Generally, the use of information-theoretical analysis permits not only establishing the (non-linear) correlations between diagnostic or therapeutic parameters of interest, but may also provide a theoretical insight into the nature of aging and related diseases by establishing the measures of variability, adaptation, regulation or homeostasis, within a system of interest. It may be hoped that the increased use of such measures in research may considerably increase diagnostic and therapeutic capabilities and the fundamental theoretical mathematical understanding of aging and disease.
Highlights
•Information theory (IT) gives unique diagnostic abilities for age-related diseases.
•IT has been used in the study of neurodegeneration, cancer, diabetes and heart disease.
•IT can provide insight into the nature of aging as a problem of deregulation.
DOI: